
Oracle BI Publisher Templating: Power of Variables

By Alex Andreev, Oracle E-Business Suite Technical Consultant, ITFB Group

Oracle BI Publisher is a reporting solution which is delivered with Oracle Applications like Oracle

Business Intelligence Enterprise Edition, Oracle E-Business Suite, Oracle Siebel. This article intends to

get you started with template creating by using variables. It also explains the usage of some common

scenarios.

BIP report creating

Oracle BI Publisher (BIP) separates the creation of data (Data logic) from the process of formatting it for

different uses (Layout + Translation). The engine can format any well-formed XML data, allowing

integration with any system that can generate XML, including Web Services or any data source available

through. BIP can merge multiple data sources into a single output document.

Template design

BI Publisher report templates can be designed using the Microsoft Word, Microsoft Excel, Adobe Acrobat

etc. It seems you have MS Office, so you can use Oracle BIP Desktop tool to create templates. In this

article we are limited by RTF template with main focus on variables.

Why are variables the aim of this article?

The creating of report requires the comprehension of the source xml data and what we can have in the

end (report). The optimal distribution of logic is an important aspect of development and maintain in the

future. For example, you need to generate a report of differences from several sources. That is, the data

model based on the source A and the source B. You need to get report data which is available only in

source A and/or only in source B and/or in both of them at the same time. How can this logic be

implemented? And what level: data logic level or template level or using the capabilities of the database?

Further in the article is given the information how it’s easy to realize by variables at the template level.

When and how can variables be used?

Some descriptions of variables are the following.

1. XSL variables or not updatable variables. You cannot change or modify values.

Cases to use:

http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Microsoft_Word
http://en.wikipedia.org/wiki/Microsoft_Excel
http://en.wikipedia.org/wiki/Adobe_Acrobat

1.1. If you use the same value multiple times it would be better to assign that value to a variable and use

references to the variable instead.

It can be described like a formula: "x = f(y)", where "f(y)" is some simple operation based on a

number or a string with the result which is also as simple type as a string and a number.

Syntax:

- to declare/set a variable value:

<xsl:variable name="variable_name"> (XSL Syntax);

<?variable:variable_name?> (BI Publisher Tag);

as an example: <xsl:variable name="x" select="10"/> or <?variable:x;10?> is assignment

of the value "10" to the "x" variable;

- to get a variable value:

the variable can then be referenced in the template as "$x".

Note: The only way in which a variable can be changed is by declaring it inside for-each loop, in which

case its value will be updated for every iteration.

<xsl:for-each select="/foo/bar">

 <xsl:variable name="some-bar" select="."/>

 <xsl:value-of select="$some-bar"/>

</xsl:for-each>.

It’s worth noting that xsl variable can store not only the number or the string but there is content inside of

it too. The first case is commonly used in BIP templating. Unfortunately the second case is less known.

That’s why description of xsl variable is divided in two parts.

Cases to use:

1.2. If you want to pre-process some values based on some logic for next using.

It can be described like a formula: "x = f(y)", where "y" is another processed variable or some data

subset, for instance, subset of source xml data and so on.

Syntax for set/get is like previous case.

As example:

<xsl:variable name="x">

 <xsl:choose>

 <xsl:when test="$y > 5">

 <xsl:text>10</xsl:text>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text>0</xsl:text>

 </xsl:otherwise>

 </xsl:choose>

</xsl:variable>

is assignment of the text value "10" or "0" to the "x" variable based on verification of another variable

"y": "y > 5";

<xsl:variable name="x">

 <xsl:for-each select="ROWSET/ROW">

 <xsl:copy-of select="." />

 </xsl:for-each>

</xsl:variable>

is assignment of data subset which is identified by XPath "ROWSET/ROW" to the "x" variable.

2. Updatable variables. They are updatable during the template application. The variables use a set/get

approach for assigning, updating, and retrieving values.

Cases to use:

for re-assignment of already existed variable, for example, by some conditions, or for storing some

mediator values.

It can be described like a formula: "x = f(x)", where "f(x)" is some post-processing operations

based on already existed value. In general it’s about some calculation like cumulative sum, re-assignment

of variable’s value.

Syntax:

- to declare/set a variable value:

<?xdoxslt:set_variable($_XDOCTX, 'variable name', value)?>;

as example:

<?xdoxslt:set_variable($_XDOCTX, 'x', xdoxslt:get_variable($_XDOCTX, 'x') +

1)?> is re-assignment of the value of "x" variable based on previous value of "x" plus 1. It’s like a

formula: "x = x + 1";

<?xdoxslt:set_variable($_XDOCTX, 'x', xdoxslt:get_variable($_XDOCTX, 'x') *

xdoxslt:get_variable($_XDOCTX, 'x'))?> is re-assignment of the value of "x" variable based

on previous value of "x" squared. It’s like a formula: "x = x * x";

- to retrieve a variable value:

<?xdoxslt:get_variable($_XDOCTX, 'variable name')?>.

Using variables by samples

Sample 1

Problem: It’s necessary to get cumulative total.

Sample XML data:

<ROWSET>

 <ROW>

 <VAL>1</VAL>

 <COL>10</COL>

 </ROW>

 <ROW>

 <VAL>2</VAL>

 <COL>10</COL>

 </ROW>

 <ROW>

 <VAL>3</VAL>

 <COL>10</COL>

 </ROW>

</ROWSET>

RTF Template:

Decl

 Val Col Res

F<?VAL?> <?COL?>SetVar GetVar E

Where fields (gray) are:

Decl <?xdoxslt:

set_variable($_XDOCTX,

'LVar',number(0))?>

F <?for-each:ROW?>

SetVar <?xdoxslt:set_variable($_X

DOCTX, 'LVar',

xdoxslt:get_variable($_XDO

CTX, 'LVar') + COL)?>

GetVar <?xdoxslt:

get_variable($_XDOCTX,

'LVar')?>

E <?end for-each?>

Result:

 Val Col Res

1 10 10

2 10 20

3 10 30

Sample 2

Problem: The result data set is formed from two sources A and B. According to this, it’s necessary to

generate a report of the differences of elements.

Sample XML data:

<ROWSETS>

 <ROWSET_A>

 <ROW>

 <FIELD>User A</FIELD>

 </ROW>

 <ROW>

 <FIELD>User R</FIELD>

 </ROW>

 <ROW>

 <FIELD>User S</FIELD>

 </ROW>

 </ROWSET_A>

 <ROWSET_B>

 <ROW>

 <FIELD>User A</FIELD>

 </ROW>

 <ROW>

 <FIELD>User R</FIELD>

 </ROW>

 <ROW>

 <FIELD>User Z</FIELD>

 </ROW>

 </ROWSET_B>

</ROWSETS>

RTF Template:

Decl_Set_A Decl_Set_B

Only in ROWSET_A

Field value

F1<?position()?> <?FIELD?>E1

Only in ROWSET_B

Field value

F2<?position()?> <?FIELD?>E2

In both ROWSETs

Field value

F3<?position()?> <?FIELD?>E3

Where fields (gray) are:

Decl_Set_A <xsl:variable

name="Set_A"

select="/ROWSETS/ROWSE

T_A/ROW/FIELD" />

Decl_Set_B <xsl:variable

name="Set_B"

select="/ROWSETS/ROWSE

T_B/ROW/FIELD" />

F1 <?for-each:

ROWSET_A/ROW[not(FIELD

=$Set_B)]?>

F2 <?for-each:

ROWSET_B/ROW[not(FIELD

=$Set_A)]?>

F3 <?for-each:

ROWSET_A/ROW[FIELD=$Se

t_B]?>

E1, E2, E3 <?end for-each?>

Result:

Only in ROWSET_A

Field value

1 User S

Only in ROWSET_B
Field value
1 User Z

In both ROWSETs
Field value
1 User A
2 User R

Sample 3

Problem: It’s necessary to remove duplicate values. If xml data is ordered, then you can use construction

like "ROW[position()=1 or ./preceding-sibling::ROW[1]/FIELD_FOR_CHECK!=

FIELD_FOR_CHECK]".

But if xml data is mixed, this construction will not work. If you apply the sort operation after for-each, the

sort will take place on resulted set after above checking up. How to get presorted list before?

Sample XML data:

<ROWSET>

 <ROW>

 <POS>42</POS>

 <FIELD>SCOTT</FIELD>

 </ROW>

 <ROW>

 <POS>44</POS>

 <FIELD>Adam</FIELD>

 </ROW>

 <ROW>

 <POS>46</POS>

 <FIELD>SCOTT</FIELD>

 </ROW>

</ROWSET>

RTF Template:

Decl

 Pos Field

F <?POS?> <?FIELD?> E

Where fields (gray) are:

Decl <xsl:variable

name="sortedSet"><xsl:fo

r-each

select="ROWSET/ROW"><xsl

:sort select="FIELD"

/><xsl:copy-of

select="." /> </xsl:for-

each> </xsl:variable>

F <?for-

each:$sortedSet/ROW[posi

tion()=1 or ./preceding-

sibling::ROW[1]/FIELD!=F

IELD]?>

E <?end for-each?>

Result:

 Pos Field
44 Adam
42 SCOTT

Sample 4

Problem: as in sample 3 but removing duplicate is by variable itself.

RTF Template:

Decl

 Pos Field

F <?POS?> <?FIELD?> E

Where fields (gray) are:

Decl <xsl:variable

name="sortedSet"

select="//ROW[not(./FIEL

D=following::ROW/FIELD)]

" />

F <?for-each:$sortedSet?>

E <?end for-each?>

Result:

 Pos Field
44 Adam
46 SCOTT

Summary

Thus, considered a number of examples will help the readers to take a broader look at the possibilities of
using variables and to improve knowledge in templating. It can be also used as a good addition to the
main documentation.

About the Author

Alex Andreev, Oracle E-Business Suite Technical Consultant, ITFB Group

Alex, as a part of ITFB Group, helps companies get the best value from their

investments in a wide range of technology stacks. In ITFB Group, he focuses on Oracle

E-Business Suite, Business Intelligence and SOA technologies.

