
PL/SQL Naming Conventions and Coding Standards Page 1 |

Ideas for Oracle PL/SQL
 Naming Conventions and Coding Standards

Author: Steven Feuerstein, steven.feuerstein@quest.com
Copyright: Steven Feuerstein, 2009. All rights reserved.
Downloadable from: http://www.ToadWorld.com/SF/standards

Modification History

Date Change By

May 27, 2009 Publish on ToadWorld Steven Feuerstein

Mid-May
2009

Incorporate recommendations from John Beresniewicz and
Patrick Barel

Steven Feuerstein

May 17, 2009 Document distributed for review Steven Feuerstein

Contents

Introduction ... 1

Principles Underlying My Standards .. 3

Table of Naming Conventions .. 4

General Guidelines I Try to Follow .. 6

Naming Conventions I Reject ... 8

How to Verify Naming Conventions and Standards... 9

PL/Scope Examples .. 9

Things I still wonder about ... 12

Introduction
I am often asked about the naming conventions and coding standards that I use. My
answer is usually a combination of muttering and vague statements and hand-waving.

That's because I have a confession: I don't have a single naming conventions and coding
standards document that I use. Why not? Because I am a software developer! That is, I
feel (well, I am) very busy, overwhelmed by deadlines. I don't feel like I have the time to
stop and write down the few rules that I might actually follow more of less consistently.
And it seems that a part of me is somewhat resistant to being accountable to a standard.
Sound familiar?

Sigh...unfortunately (no, make that very fortunately), lots of other PL/SQL developers
look to me for advice about how to "do things right." Ah, the pressure, the pressure!

PL/SQL Naming Conventions and Coding Standards Page 2 |

Ah, the hypocrisy. That's what it really comes down to: I am a big hypocrite. I routinely
violate just about every best practice I push on others. I sound high and mighty, but when
I write code, I feel the same pull to do the quick and dirty.

Yet, I do have standards, and I even follow them, more or less. It's just been hard to find
the time to write them down. So that's (finally) what you'll find below. It's a combination
of the naming conventions I follow, certain naming conventions with which I disagree,
and a variety of other suggestions. I hope you find it useful. I'm not going to make much
of an effort to justify my approach or explain away the inconsistencies. I'll just show you
what I do and you can decide if you'd like to use my path as a model for your own
journey.

This is a work in progress. If you have disagreements with my approach, have a
suggestion for something to add to this document, or would like to offer your own set of
naming conventions and coding standards to the world of PL/SQL, send me a note at
steven.feuerstein@quest.com or steven@stevenfeuerstein.com. If I agree with it, I will
put it into the document (and give you credit!) or make it available on the web page on
which this document is located:

http://www.ToadWorld.com/SF/standards

PL/SQL Naming Conventions and Coding Standards Page 3 |

Principles Underlying My Standards

• The most important factor in a name is that it concisely (not that we have any choice
about that with a limit of 30 characters!) and accurately describes the significance of
the identifier. If it's a variable, what is the description of the value? If it's a procedure,
what does it do (and how can I describe it in 30 characters or less)? If it's a function,
what does it return? As my friend, John Beresniewicz, so neatly puts it: "The
algorithm or process should be visible in procedure names and invisible in function
names." If I had to choose between highly standardized, but obscure names or non-
standardized, but highly descriptive names, I would always go for the latter.

• Normalize thy names: I try to avoid following conventions that introduce redundancy.
For example, I never put the word "get" in front of a function name. After all every
function gets something (returns it, anyway). So that prefix adds nothing and takes up
valuable real estate.

• Upper-case non-application identifiers (that is, elements of the base PL/SQL language
and Oracle built-ins) and lower-case application-specific elements. Lots of people
disagree with me on this, including Bryn Llewellyn, PL/SQL Product Manager. He
feels like my code is shouting at him. Sorry, Bryn! I like this style because it gives
some dimension to the code, makes it easier to pick out my stuff as opposed to the
built-in Oracle stuff. Camel notation (maxSalary) is something to be avoided in case-
insensitive PL/SQL. Auto-formatters will likely destroy all your hard and careful
naming work.

• Make plural anything that contains multiple pieces of information: relational tables
and collections, for the most part. The table containing orders would be called orders,
but a variable holding a single row of this table might be named l_order.

• If the value of a variable will not (should not) change within the scope in which it is
defined, I declare it to be a constant and use a c_ or gc_ prefix to indicate that it is a
constant.

• Whenever the variable is based on (with %TYPE or %ROWTYPE) and/or contains
data retrieved from a table or column in a table, the "root name" of the identifier (that
is the name, absent prefixes and suffixes) should be the same as the element from
which it is defined. If, for example, I use employees.first_name%TYPE to declare my
variable, then I will name it l_first_name.

PL/SQL Naming Conventions and Coding Standards Page 4 |

Table of Naming Conventions
Key to table:

• "SC" indicates the scope prefix, either l_ for local or g_ for global.

• [] indicates optional, as in: Sure, I should do it, but I rarely do.

• <rootname> is the root name of the identifier, the part of the name that describes
the meaning of the thing named.

Type of element Naming convention Example

Variable declared in a
PL/SQL block (anonymous,
nested, subprogram)

l_<rootname> l_total_sales

Constant declared in a
PL/SQL block (anonymous,
nested, subprogram)

c_<rootname> c_max_salary

Variable declared at the
package level

g_<rootname> g_total_sales

Constant declared at the
package level

gc_<rootname> gc_max_salary

Explicit cursor [SC_]<rootname>_cur

employees_cur

l_employees_cur

g_employees _cur

Cursor variables [SC_]<rootname>_cv name_and_salary_cv

Record types [SC_]<rootname>_rt name_and_salary_rt

Record variable Same as local or global
variable, singular form.

Sometimes I used a prefix
like "_info" to indicate it’s a
bunch of information, not
just a single value.

l_employee_info

Collection types [SC_]<rootname>_aat

[SC_]<rootname>_nt

[SC_]<rootname>_vat

or sometimes just

[SC_]<rootname>_t

employees_aat

employees_nt

employees_vat

Collection variable Same as local or global l_employees

PL/SQL Naming Conventions and Coding Standards Page 5 |

variable, plural form

Object type [SC_]<rootname>_ot

or

[SC_]<rootname>t

employee_ot

IN parameter <rootname>_in

or

<rootname>_i

salary_in

OUT parameter <rootname>_out

or

<rootname>_o

salary_out

IN OUT parameter <rootname>_inout

or

<rootname>_io

salary_inout

That's a bit verbose, I know.

PL/SQL Naming Conventions and Coding Standards Page 6 |

General Guidelines I Try to Follow
• I avoid using names like "i" and "j" for variables. Sure, we all pretty much know

what they mean (integer iterators, for the most part), but they are still obscure and
do not enhance the readability of my code.

• I avoid using the names of any elements defined in the STANDARD and
DBMS_STANDARD package. These are the two default packages of PL/SQL.
Many of the names you might think are reserved, are rather simply elements
defined in STANDARD, like integer, sysdate and no_data_found. You could
declare variables with these same names, but the resulting code will be very
confusing.

• I do not "recycle" names. I might have a program in which I perform a series of
calculations, all involving integers. I could declare a single variable like this:
l_integer PLS_INTEGER;

But the code will be hard to understand. Declare distinct variables, exceptions,
etc. so that the names are specific and relevant to the task at hand. Most definitely
do not do what Oracle did with NO_DATA_FOUND: raise it for a SELECT
INTO that returns no rows, an attempt to read an element in a collection at an
index value that is undefined, an attempt to read past the end of a file. How silly!

• I try to avoid repeating variable names at different scopes (especially nested and
especially parameters): this can easily and often happen with cut and paste, and
procedure extraction. It is, I suppose, a violation of my "Don't Recycle" rule, but
it's more of an accidental repurposing. The problem with having the same name
used for multiple, nested levels is that unless you qualify each reference (which is
not a common practice), you can easily end up referencing the "wrong" variable
or parameter.

• Qualify all column names and variables names inside SQL statements in PL/SQL.
This is valuable not only for making the code more readable and guarding against
really hard to pin down bugs (when, for example, the DBA adds a new column to
the table called "employee_id_in," which just so happens to match the naming
convention you use for parameters), but also to take advantage of Oracle Database
11g's fine-grained dependency feature to minimize the invalidation of program
units when referenced objects are changed.

• Add labels to the END statements of all your packages, procedures, functions, etc.
It is a small thing that greatly aids in readability.

• Rely on a single, generic error manager utility to raise, handle and log errors.
Individual developers should never waste their time calling
DBMS_UTILITY.FORMAT_ERROR_BACKTRACE (though you should
definitely know what that is!) or writing inserts into log tables. You end with total

PL/SQL Naming Conventions and Coding Standards Page 7 |

chaos and inconsistent information for both users and support. The best way to
avoid this is to rely on a single utility. If you don't already have one, check out
the freeware Quest Error Manager, currently available at
http://www.ToadWorld.com (press Download button and then "Exclusive
ToadWorld Downloads).

• Stop writing so much SQL! Every SQL statement is a hard-coding of the current
data structures. Don't repeat the same logical SQL statement. Keep SQL out of
application-level code entirely. Instead, generate/build and rely on APIs (table-
level, transaction-level) that hide SQL statements behind procedures and
functions. One way to accomplish this: download the Quest CodeGen Utility from
ToadWorld.com (press Download button and then "Exclusive ToadWorld
Downloads). CodeGen generates API packages for you – and it's free!

• Write tiny, little chunks of code (☺). Use top-down design, combined with
reusable code and local subprograms (procedures and functions declared within
another procedure or function), to make sure that your executable sections have
no more than 50 lines of code in them. Define your subprograms at the package
level if they need to be used by more than one program in that package or outside
of that package.

PL/SQL Naming Conventions and Coding Standards Page 8 |

Naming Conventions I Reject
Some fairly common naming conventions rub me the wrong way.

• Start your parameters with "p_". Redundant. If you follow my approach of using a
suffix to indicate the parameter mode (_i, _o, _io) then you can see at a glance
that it is a parameter and you know how it can be used in your program.

• Start your functions with "get_". Redundant. I mentioned this earlier. I consider it
redundant information that uses up valuable real estate. The whole point of a
function is return (that is, get) a piece of information – that's why it has a
RETURN clause. Side note: I also recommend that you avoid any OUT or IN
OUT parameters for a function – it should return information only through the
RETURN clause. If the function needs to return multiple values, them together as
a record type and return a record based on that type. If such a transformation
seems unnatural then maybe you should be writing a procedure.

• Start your procedures with "p_" (or "sp_" for stored procedure), start your
functions with "f_" (or "sf_" for stored function),. Again, redundant. The way in
which you invoke your subprogram in your code will unambiguously reveal if it
is a procedure or a function.

• Include an indicator of the datatype in the name, as in "g_i_counter", in which the
"i" indicates that the datatype is an integer. I suppose that this information might
sometimes come in handy, but I have these concerns: it uses up some more of our
precious real estate; what if I change the datatype? Then I have to change the
name; surely you should be comfortable enough with the code to have a basic
understanding of the types of things with which you working.

PL/SQL Naming Conventions and Coding Standards Page 9 |

How to Verify Naming Conventions and Standards
What's the point of setting standards if you never check to see if they are followed?

Here are some ideas for analyzing code to check with standards compliance:

• Automate the process whenever possible. Many of the better PL/SQL editors
include features that automatically analyze your code for compliance with best
practices (though none yet validate compliance with naming conventions). Check
out CodeXpert in Toad and SQL Navigator for an example.

• Write queries against the ALL_SOURCE data dictionary view. This view
contains all the source code of the programs on which you have execute authority
(USER_SOURCE contains all the source code of the programs you own). It won't
be easy to validate naming standards with a simply query against source, but you
can certainly check for violations of some rules (for example, "In our application,
we call the Quest Error Manager q$error_manager package to log and raise
exceptions, so RAISE_APPLICATION_ERROR should never appear in our
code.").

• Download and install Oracle Database 11g and check out the new PL/Scope
feature. When you turn on PL/Scope in your session and compile your code,
Oracle loads tons of information about your identifiers (the named elements of
your code) into the ALL_IDENTIFIERS view. You can then write queries against
this view, just like against ALL_SOURCE, but those queries can be so much
more intelligent and productive. I offer a few examples below. Hopefully over
time, tools like Toad will provide user interfaces to this fantastic feature.

PL/Scope Examples

1. Enable gathering of PL/Scope information:

ALTER SESSION SET plscope_settings='IDENTIFIERS:ALL'
/

2. Show me all the declarations of variables for the specified program:

 SELECT a.name variable_name, b.name context_name, a.signature
 FROM user_identifiers a, user_identifiers b
 WHERE a.usage_context_id = b.usage_id
 AND a.TYPE = 'VARIABLE'
 AND a.usage = 'DECLARATION'
 AND a.object_name = '&1'
 AND a.object_name = b.object_name
ORDER BY a.object_type, a.usage_id

3. Finally, to show you what really is possible with PL/Scope, I offer a query to validate
the following naming convention violations (and, yes, I realize that they do not match
mine):

• Type definitions should be named starting with t_

• Names of global (package level) variables should start with g_

• Parameters are named p_<parameter description>

• Local variables have names starting with l_

PL/SQL Naming Conventions and Coding Standards Page 10 |

• Variable and parameter names should be written in lowercase

• No variables should be declared in the package specification

This was written by Lucas Jellema of the AMIS consulting firm. His complete
explanation is available on AMIS's fantastic blog:

http://technology.amis.nl/blog/2584/enforcing-plsql-naming-conventions-
through-a-simple-sql-query-using-oracle-11g-plscope

WITH identifiers
 AS (SELECT i.name
 , i.TYPE
 , i.usage
 , s.line
 , i.object_type
 , i.object_name
 , s.text source
 FROM user_identifiers i
 JOIN
 user_source s
 ON (s.name = i.object_name
 AND s.TYPE = i.object_type
 AND s.line = i.line)
 WHERE object_name = '&1'),
 global_section
 AS (SELECT MIN (line) end_line, object_name
 FROM identifiers
 WHERE object_type = 'PACKAGE BODY'
 AND TYPE IN ('PROCEDURE', 'FUNCTION')
 GROUP BY object_name),
 naming_convention_violations
 AS (SELECT name identifier
 , 'line ' || line || ': ' || source sourceline
 , CASE
 WHEN TYPE = 'RECORD'
 AND usage = 'DECLARATION'
 AND SUBSTR (LOWER (name), 1, 2) <> 't_'
 THEN
 'Violated convention that type definitions
should be called t_<name>'
 WHEN TYPE IN
 ('FORMAL IN', 'FORMAL IN OUT', 'FORMAL
OUT')
 AND usage = 'DECLARATION'
 AND SUBSTR (LOWER (name), 1, 2) <> 'p_'
 THEN
 'Violated convention that (input and output)
parameters should be called p_<name>'
 WHEN TYPE = 'VARIABLE' AND usage = 'DECLARATION'
 THEN
 CASE
 WHEN line < global_section.end_line /*
global variable */
 AND
SUBSTR (LOWER (name), 1, 2) <> 'g_'
 THEN
 'Violated convention that global
variables should be called g_<name>'
 WHEN line > global_section.end_line /* local
variable */
 AND
SUBSTR (LOWER (name), 1, 2) <> 'l_'
 THEN

PL/SQL Naming Conventions and Coding Standards Page 11 |

 'Violated convention that local variables
should be called l_<name>'
 END
 END
 MESSAGE
 FROM identifiers
 JOIN
 global_section
 USING (object_name)),
 global_violations
 AS (SELECT name identifier
 , 'line ' || line || ': ' || source sourceline
 , CASE
 WHEN TYPE = 'VARIABLE'
 AND usage = 'DECLARATION'
 AND object_type = 'PACKAGE'
 THEN
 'Violated convention that there should not be
any Global Variables in a Package Specification'
 END
 MESSAGE
 FROM identifiers),
 casing_violations
 AS (SELECT name identifier
 , 'line ' || line || ': ' || source sourceline
 , CASE
 WHEN TYPE = 'VARIABLE'
 AND usage = 'DECLARATION'
 AND INSTR (source, LOWER (name)) = 0
 THEN
 'Violated convention that variable names should
spelled in lowercase only'
 END
 MESSAGE
 FROM identifiers),
 convention_violations AS (SELECT *
 FROM naming_convention_violations
 UNION ALL
 SELECT *
 FROM global_violations
 UNION ALL
 SELECT *
 FROM casing_violations)
SELECT *
 FROM convention_violations
 WHERE MESSAGE IS NOT NULL
/

PL/SQL Naming Conventions and Coding Standards Page 12 |

Things I still wonder about
I haven't sorted it all out yet. Here are the aspects about which I am not yet completely
clear. Do you have any suggestions or things to add to the list?

• How to distinguish between all the levels of scope between global (package level)
and local (in the current block). What if the current block is a local subprogram
within another subprogram?

• Should functions and procedures without any arguments be invoked with "()"
after the subprogram name? Specifically for functions, if I do not invoke it this
way function_name(), then it could be interpreted as a variable. Is this a bad
thing? I am not sure. What do you think?

